Emergencies 24 Hours

Medical/Fire           -  Dial 911
Harvard Police       -  617.495.1212
Operations Center -  617.495.5560

Services

Online Tools

 

GETTING STARTED

Sustainable landscape management encourages the systems created by nature: healthy soils supporting healthy plants. The foundation of an organic program requires the plants and soils to be viewed as extensions of one another, existing in a perfect symbiotic relationship. This holistic, "bottom up" focus contrasts with the conventional maintenance mindset of treating specific plant health conditions from the "top down" through the application of synthetic chemicals.

The early phase of our transition efforts focused on reducing or eliminating the use of all inorganic fertilizers, chemical pesticides, fungicides, and herbicides, and significantly reducing the use of organic nitrogen fertilizers in our maintenance programs. Our experience has convinced us that chemicals and synthetics can be systematically eliminated and replaced by programmed encouragement of the natural cycles of support.

Understanding all environmental conditions within a landscape, including public use patterns as well aesthetic expectations is vital to creating a successful maintenance program. As you'll see, our programs are continuously adjusted to meet the needs of Harvard's various landscape systems.

Our Organic Landscaping Program consists of seven primary components:

  1. Organic Soils Management - Restoring the natural nutrient cycle
  2. Soil Testing - The basis of a programmed approach
  3. Composting - Feedstock, Tea Brews & Application
  4. Pest and Disease Control - Non-toxic methods
  5. Irrigation - Water conservation & management
  6. Proper Planting & Pruning Techniques
  7. Plant Selection and Placement

TOP

Organic Soils Management

Organic Soils Management restores and maintains the natural nutrient cycling system and is at the heart of any organic landscape program. The benefits of this natural approach include improved nutrient and moisture availability and retention, disease suppression, aeration, and degradation of harmful pollutants.

A) Nutrient Retention: beneficial organisms keep valuable nutrients in the proper root zone. Bacteria and fungi also prevent leaching; a process that removes nitrogen and other nutrients from the soil. Preventing this material from contaminating the water table is another important benefit.

B) Nutrient Availability: protozoa feed on bacteria and fungi, excreting nitrogen in a form that is easily absorbed by plants. The symbiotic relationship between fungi and roots helps plants filter needed micronutrients from the soil. An organic program focuses on building up the components needed to optimize nitrogen and nutrient cycling.

C) Moisture Retention: organic matter retains water in the root zone long enough to be taken up by plants, dramatically reducing overall water use. Irrigation needs were reduced by 33% on our organic test plots in 2008.

D) Pest and Disease Control: beneficial nematodes and fungi protect the roots of plants from potentially harmful organisms always present in the soil.

E) Aeration: organisms aerate and give structure to the soil by creating air holes and drain pockets. This reduces compaction and maximizes water availability to the root zone.

F) Degradation of Pollutants: properly managed soil includes organisms that consume a wide-range of pollutants across a variety of environmental conditions.


TOP

Soil Testing

Comprehensive soil testing forms the basis of any successful organic maintenance program.

The following three tests are required to fully understand soil conditions:

Biological Analysis: testing for fungi and bacteria as well as beneficial predators (protozoa and nematodes) takes much of the guesswork out of selecting the proper compost/organic matter amendment strategy. The nutrient cycling systems of different plants may require specific fungal or bacterial dominated soils to function optimally. Biological testing is not a replacement of standard nutrient, chemical, and textural analyses. It is simply an additional tool that can help provide a fuller picture of what's going on in our soil.

Some of the specific biological measurements include:

Chemical Analysis: required to determine the following:

Textural Analysis: determines the percentage of sand, silt and clay in a given soil. The ratio of sand, silt, and clay in soil determines its ability to hold moisture and nutrients.


TOP

Composting

Compost is the aerobically decomposed remnants of plants and food created through the management of heat, moisture, and aeration. The result is a nutrient-rich environment for beneficial bacteria, fungi, and protozoa that can be applied directly to the soils. These microorganisms control pests (pathogenic organisms) and aerate the soil, providing the opportunity for extended root development. At Harvard, all herbaceous and woody materials - along with a growing portion of food waste from dining halls and cafeterias - are collected for composting. When composting, emphasis should focus on the creation of a high quality end product and not just a way to get rid unwanted waste. These are precious resources that when handled properly will yield extremely valuable results.

At Harvard, we are creating the following three basic types of composts, each used to address particular needs within our landscape systems:

Bacterial Mix compost are more dominant in bacterial feedstocks (hay weeds, coffee grounds, herbaceous material). Common plants that prefer bacterial soils (grasses, annuals, perennials, and vegetables)

Fungal Mix compost are dominant in fungal feedstocks (dry leaves, sawdust, wood chips, shredded newspaper). Common plants that prefer fungal soils (trees and shrubs)

Vermicompost is the product of some species of earthworms as they breakdown organic matter. Most of our vermicompost is used as a solid in planters, but is also an ingredient in many of our compost tea recipes. This compost is typically the highest in available nutrients.

Composting must be done carefully and systematically. Here are the keys to successful composting.

  1. Temperature: for best results, temperatures within the entire compost pile must stay between 130-160 degrees F for approximately two weeks. Maintaining this temperature range is critical; warm enough to kill off weed seeds and pathogens yet still allowing for cultivation of beneficial organisms.
  2. Aeration: during the two weeks when temperatures of at least 130 degrees F are required, turn the pile 2-3 times per week to allow air to infiltrate. This step is essential for maintaining proper temperatures and encouraging the development of beneficial soil organisms to breakdown organic material.
  3. Moisture: too much or too little moisture will negatively impact the quality of the compost. A moisture rate of 35% to 45% is optimum. To determine this, grab a handful of compost from the center of the pile and squeeze it. The material should be moist to the touch but not drip. Too dry: add water and mix thoroughly. Too wet: turn more frequently and cover to protect from rain.

The following are two basic compost recipes:

Grasses, Annual, Perennials, and Vegetables

Bacterial Mix - Feedstock Ingredients

45% Bacterial: hay, weeds, coffee grounds, herbaceous material

30% Fungal: dry leaves, sawdust, wood chips, shredded newspaper

25% Nitrogen: grass clippings, vegetable waste, legumes, manure

Trees and Shrubs

Fungal Mix - Feedstock Ingredients

45% Fungal: dry leaves, sawdust, wood chips, shredded newspaper

30% Bacterial: hay, weeds, coffee grounds, herbaceous material

25% Nitrogen: grass clippings, vegetable waste, legumes, manure

Important: To select the proper compost, identify the types of plants within your landscape. In general, turf, grasses, and perennials require higher bacterial populations, while more complex landscapes with trees and shrubs benefit from higher fungal populations.

Compost Teas are a specific liquid biological amendment made by coaxing the beneficial organisms from the compost and depositing them into an aerated water solution with various food sources. The advantage of the tea is that recipes can be developed and fine tuned to target specific conditions and plant needs. Careful application of compost teas can speed up the process of balancing the soil biology... but achieving the proper mix requires time and testing. Remember, that the better the compost, the more effective the tea!

The following are some additional considerations for Compost Tea:


TOP

Pest & Disease Control - Non-toxic methods

Our program uses only non-toxic methods for treating and preventing pests and disease by relying on the following processes and techniques:

Important: Before using the above treatments, verify that pests and/or disease are the problem. Performing a comprehensive soil, plant, and field analysis will help identify the underlying issues and determine the best path forward. Time spent in this early phase will allow you to choose solutions to minimize the reoccurrence of pest and disease problems.


TOP

Irrigation - Water Conservation & Management

Properly managing water consumption is a vital component of sustainable landscape management. The goal of any irrigation program should be to apply the right amount of water in the right locations and at just the right time. Besides being wasteful and expensive, over-watering causes leaching of valuable soil nutrients and can damage plant health. Organic landscaping greatly increases moisture retention by encouraging deeper root growth so that conventional irrigation schedules can be significantly reduced or eliminated entirely. However, during drought and transplanting operations additional water may be required.

Water is most efficiently applied through in-ground irrigation systems. While these systems typically have automated control features, it's important to closely monitor their use to ensure adequate coverage. We have also found that frequent adjustment the automation in response to changing environmental conditions is still required.


TOP

Proper Planting & Pruning Techniques

Proper pruning and installation of any landscape is essential. The following are a few techniques for ensuring the landscape gets a good start.


TOP

Plant Selection & Placement

Location, location, location! Choosing the proper plants and placing them in optimum areas is vital to building a sustainable landscape. Plants need good soils and adequate natural sunlight to flourish. They also need a spot where their natural size and shape will be uninhibited. Considerations of plant size, color, and suitability to the surroundings should include anticipated interaction with people as well as existing and future plants. Always think ahead before planting!

Contact Webmaster | Privacy Policy | The President and Fellows of Harvard College

Valid CSS Valid HTML Section 508